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The question of the stability of Wigner's electron lattice, which is the ground state of a dilute electron gas, 
is considered. To determine the density range in which the electron lattice becomes unstable (coming from 
lower densities) a simple stability criterion is formulated. It is based on the notion that, in order for a solid 
structure to exist, the single particle potential should exhibit a localized well with at least one bound state. 
The disappearance of bound states with increasing density, marking the onset of melting in the model, is re­
lated to the possibility of defect formation. In this fashion an upper and a lower limit for the melting density 
can be established, which are found to occur at densities corresponding to r8 « 47 and r8 ~ 100, respectively 
(r9 is the radius of the unit sphere in Bohr units). Consequently, melting of the electron lattice is expected to 
take place at densities much lower than estimated previously. 

I. INTRODUCTION 

THE hypothetical electron gas consists of a large 
number N of electrons moving in a compensating 

uniform background of charge in a volume 0. The 
electron density is usually expressed in terms of the 
dimensionless parameter rs which is the radius (in 
Bohr units ao) of the sphere representing the volume per 
particle, i.e., fx(rsa0)3 = O/iV. 

Wigner1'2 has argued that as the density tends to 
zero (rs —> oo) the Coulomb interactions will dominate 
the kinetic energy of the electrons, as a result of which 
these will arrange themselves in the configuration of 
lowest potential energy. This is a body-centered cubic 
(bcc) lattice. 

In recent years there has been a renewed interest in 
the electron lattice and a number of authors3-5 have 
given a detailed evaluation of the ground-state energy. 

A question which has received little attention so far 
and which is the subject of this note is that of the range 
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of densities for which the electron lattice represents the 
ground state of the electron gas. So far, two estimates 
have been given for the "melting density" at absolute 
zero, i.e., the density above which the lattice cannot 
exist and below which it forms the ground state. Both 
estimates lead to a melting density corresponding to 
rs==20. Nozieres and Pines6 arrive at this result by 
applying Lindemann's melting formula to the electron 
gas. Mott7 finds the same number from a comparison 
of the energies of the lattice state and the metallic state. 
On the other hand, Carr3 estimates the low-density 
region to extend up to densities corresponding to 
rs=5. The latter, however, is not claimed to be the 
melting density, but rather the density below which 
Carr's expression for the ground-state energy converges. 

In this paper we introduce a simple stability criterion 
for the electron lattice. This stability criterion is related 
to the full problem of lattice stability and melting in 
somewhat the same fashion as the Einstein approxima­
tion is related to the full theory of lattice dynamics. The 
neglect of correlations is, of course, drastic if one wants 
to describe a phenomenon like melting, which can, in 
general, be characterized as the breaking down of 
long-range correlations. However, the situation in the 
electron lattice is peculiar in the following sense. As 
Wigner has pointed out, the fact that the lattice is the 
ground-state configuration at low densities is the result 

6 P. Nozieres and D. Pines, Phys. Rev. I l l , 442 (1958). 
7 N. F. Mott, Phil. Mag. 6, 287 (1961). 
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of the long-range Coulomb interactions, which keep 
the electrons as far apart from each other as possible. 
But once the system is in the lattice configuration, the 
main part of the binding energy as well as of the force 
governing the electron motion, arise from the interaction 
of the electron with the background in its immediate 
vicinity. I t can be shown (see the Appendix) that the 
spherical approximation, in which each electron is 
considered to reside in a spherical cell and in which all 
interactions between the cells are neglected, accounts 
for 99.5% of the electrostatic binding energy, while its 
result for the vibrational energy is too large by only 
13% [viz. 3rs~

z/2 (Wigner) as compared to 2.65 rs~
z/2 

(Carr)]. I t thus appears that an Einstein-type approxi­
mation, in which an electron moves in the average field 
of all the other electrons, as if these were at rest in their 
equilibrium positions, and of the background, is not at 
all a bad approximation at low densities. In the follow­
ing it will be shown how such a model can be used to 
derive limits between which the real melting density 
should be expected to lie. 

The stability criterion which is used for obtaining 
these limits relates melting to the disappearance of 
bound states for the individual electrons. A criterion 
which is in some repects similar has first been proposed 
by Mott7 in connection with the transition between 
nonconducting and conducting states in metals and 
semiconductors. 

The present stability criterion is based on the 
property of a solid, that the particles remain confined 
to small regions around fixed points in space. Thus, a 
solid arrangement may be characterized by the fact 
that the single-particle potential has a spatially localized 
well in which there exists at least one stable bound state. 
At densities where this condition is no longer fulfilled, 
i.e., when bound states disappear, no solid arrangement 
can exist. 

The potential V which we have to consider for the 
stability of the electron lattice is, strictly speaking, not 
a single-particle potential. Although V depends explic­
itly on the position coordinate r of only one electron, it 
takes account of the formation of an interstitial-
vacancy pair (crowdion-anticrowdion pair) for values 
of r outside the central cell (r>rs). That is, through r, 
V implicitly depends on the coordinates of a number of 
other electrons. 

In the present considerations, the defect formation for 
values of r>rs is shown to determine the bound states 
in the central well of the potential, i.e., for r values 
smaller than rs. I t is shown that a determination of the 
bound states in this way leads to a melting density 
somewhere in the range r s ^ 4 7 to r s ^100 . Such a 
melting density is considerably lower than the estimates 
quoted above. 

II. DEFECTS IN THE ELECTRON LATTICE 

The volume 0, occupied by the electron lattice, can 
be divided into N unit cells (Wigner-Seitz cells), 

centered around the N lattice points. Each electron 
carries out vibrations around the center of its individual 
cell. In the lowest approximation (Wigner2) the cells 
are considered as spherical (Wigner cells) and the 
dipolar interaction between the cells is neglected. 

At extremely low densities, for rs^ 1000 say, all 
electrons are well localized inside their Wigner cells. As 
the density is increased (r& decreased) the extension of 
the wave function outside the cell increases and so does 
the probability for an electron to escape from its cell. 
If an electron can escape and settle elsewhere without 
breaking up the surrounding lattice, the electron density 
in the region around the interstitial electron is increased 
and that in the region around the vacancy is decreased. 
We can get an idea about the distance over which the 
influence of such a defect is felt, by evaluating the 
static dielectric constant of the electron lattice. An 
elementary calculation gives that the polarizability of 
an isolated Wigner cell is equal to Rz, where R is the 
radius of the sphere. I t then follows from the Clausius-
Mossotti relation that estatic= — °°.8 This means that 
the influence of a static electric disturbance is shielded 
over a very short distance. As a consequence, the 
regions affected by the defects, which result when an 
electron is displaced from its lattice site, will be quite 
small and they will not interact. 

To avoid going into the details of the deformation of 
the lattice around such defects, we assume, for the 
calculation of the defect formation energy, that these 
regions are spherical and that the electron density in 
each of them is constant. Such a pair of defects will be 
called a crowdion-anticrowdion pair9 (c-ac pair). We 
further assume that, as a result of the strong shielding, 
only the immediate neighbors of the interstitial and the 
vacancy are included in the crowdion and the anti-
crowdion. In the bcc lattice, which is the structure with 
the lowest electrostatic binding energy, an interstitial 
site has six immediate neighbors and so we assume that 
seven electrons participate in the crowdion, namely the 
intruder plus its six neighbors: nc=7. In the anti-
crowdion the eight neighbors of the empty cell divide 
the extra volume, i.e., #ac=8.10 

8 The same result is obtained by taking the limit co —> 0 of the 
frequency dependent dielectric constant e(cd). One finds for a 
cubic arrangement of Wigner spheres with dipolar interaction 

6(co) = l-3(o>o2A>2), 

where co0
2 = (e2/mRs) (= Jcopiasma2) is the frequency of oscillation of 

an electron in an isolated Wigner sphere. The fact that e is negative 
for a><wpiasma is a result of the large polarizability of the Wigner 
sphere. 

9 The word "crowdion" has a well-defined meaning in the theory 
of lattice defects, indicating an interstitial, located in a closest 
packed row of a lattice [H. Paneth, Phys. Rev. 80, 708 (1950)]. 
Here we mean a small region of the crystal in which the density 
is higher than average. An anticrowdion is the opposite. 

10 This simplified model for lattice defects has also been applied 
to solid a-He3 to account for the anomalous specific heat and the 
self-diffusion. [F. W. de Wette, Phys. Rev. 129, 1160 (1963).] 
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III. THE ENERGIES OF CROWDION 
AND ANTICROWDION 

The formation energy of the crowdion-anticrowdion 
pair can be evaluated from €(rs), the energy per electron 
in the undisturbed lattice. The main contributions to 
e(r8) are the electrostatic binding energy and zero-point 
energy (cf. Ref. 3) 

€( r s )=- (1 .792/ r s )+(2 .65/ r s
3 / 2 ) . (1) 

We first evaluate the crowdion energy. Inside the 
crowdion the electron density is higher than the average 
electron density, but the background density p& is 
unchanged. Since the rs dependence of the zero-point 
energy [second term in (1)] is due to the background 
density, this term remains unchanged. In other words, 
the crowdion energy is purely electrostatic. There are 
two contributions to this energy, the first one is due 
to the electrostatic interactions inside the crowdion, and 
the second one is due to the interactions with the rest of 
the lattice. As a result of the strong shielding, the latter 
contribution may be evaluated as arising from a positive 
surface charge Aa on the crowdion surface, which shields 
the net negative charge of the crowdion (one electron 
charge) from the outside.11 The electrostatic energy 
arising inside the crowdion is obtained as follows. Let 
the electron density in the crowdion correspond to 
rs+Ars(Ars<0), then 

- 1 . 7 9 2 / ( r . + Ar.) (2) 

is the electrostatic energy per electron in a crowdion 
with compensating background. But this takes into 
account too much background and we have to add the 
energy resulting from a negative charge density Ap, 
which reduces the background density again to p&, 
i.e., Ap=p&—pbn (pbn is the background density which 
neutralizes the electron density inside the crowdion). 
The total crowdion energy can thus be found by using 
(2) and adding the total effect of the extra background 
density Acr+Ap (see Fig. 1). Hence, there are three 
terms to be added to (2), namely, the interaction energy 
of Ao-+Ap with [1 ] the crowdion electrons, [2 ] the 
neutralizing background p&n, and [3 ] itself. A straight­
forward calculation, assuming spherical Wigner cells, 
leads to : 

3 1 
contributions [ l ] + [ 2 ] = R y , (3) 

contribution [3]= 

5 rs+Ars 

1 

5nc
1/z(rs+Ars) 

R y , (4) 

where nc is the number of crowdion electrons. Ars is 
determined by nc, namely 

rs+Ars~(l-l/3nc)rs=0.952rs for « € = 7 . (5) 

11 This positive surface charge represents the effect of the slight 
outward shift of the lattice electrons surrounding the crowdion, 
which is caused by the negative crowdion charge. 
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FIG. 1. Charge densities used in the calculation of the crowdion 
energy, plotted along a line through the center of the crowdion. 
The symbols are denned in the text. 

The total crowdion energy Ec is the sum of nc times (2), 
and (3)+(4) . Finally, the crowdion formation energy 
AEC is the difference between Ec and the energy of nc 

electrons in the undisturbed lattice (which is —1.792 
ncrs~~l). Using nc=7, we find 

0.108 
AEC = Ry . (6) 

The energy of the anticrowdion is found by similar 
arguments. Ap is then positive inside and Aa represents 
the surface density equal to one smeared-out electron 
charge. The formulas (2) and (4) remain unchanged 
but (3) has the opposite sign, due to the changed sign 
of Ap. Instead of (5) we have 

r . + A r ^ C l + ( l / 3 » a c ) > . = 1.042f. for nac=$. (7) 

Using ^ a c = 8 , we find 

A£ a c = 0.094/fs Ry. (8) 

Since there is no interaction between crowdion and 
anticrowdion, the formation energy of the pair is simply 
the sum of the separate formation energies, i.e., 

AE=AEc+AEac~0.2/ra Ry. 

IV. THE STABILITY CRITERION 

(9) 

As mentioned in the Introduction, we will introduce 
a simple stability criterion, which will enable us to 
indicate an upper and a lower limit, between which the 
real melting density of the electron lattice should lie. 
This criterion relates the stability of the electron lattice 
to the existence of bound states for an electron in a 
single-particle potential V(r)> which is thought to be 
centered around a lattice point. A logical choice is to 
take for V(r) the potential energy of the static lattice, 
expressed as a function of the position coordinate r of 
one electron. For r<rs (electron inside its cell) V(r) 
coincides, for all practical purposes, with the potential 
energy of an electron in its isolated Wigner cell [i.e., 
V(r) quadratic in / ] , while for r>rs (electron outside 
its cell) V(r) contains the effect of the crowdion-
anticrowdion formation. This means that through r, 
V(r) implicitly depends on the rest-positions of those 
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Vn(D 

FIG. 2. Solid line: potential 
energy function V\(r) for the 
determination of the absolute 
upper limit to the melting 
density. Dashed line: Vn(r) for 
the determination of the lower 
limit to the melting density. 

other electrons, which are involved in the crowdion and 
the anticrowdion. Thus, V(r) exhibits a central well, 
which is responsible for localizing the electron, and it 
has as yet an unspecified form for r>rs. Obviously, the 
form of V for r>rs is of crucial importance for the 
lattice stability, because it is this form that determines 
the existence and the energies of the bound states 
inside the central part of V(r). The estimates for the 
upper and lower limits for the melting density are now 
obtained by successively making two extreme assump­
tions for the shape of V(r) in the range r>rs. 

Upper Limit 

The upper limit, i.e., the density above which the 
electron lattice will certainly not exist, is obtained when 
we estimate the density above which a bound state for 
an electron in its Wigner cell cannot exist, disregarding 
the crowdion-anticrowdion formation for r>rs. For 
this estimate we use a potential Vi(r)y which is the 
one-electron parabolic potential inside the cell ( r< r s ) , 
and which is cut off flat outside, i.e., Vi(r) = Vi(r8) for 
r>rs (see Fig. 2, solid line). 

For a crude estimate of the condition for the existence 
of a bound state in this potential, we make a comparison 
with the square-well potential. A spherical well with 
radius p (in Bohr units a0) and depth U (in Ry) has at 
least one bound state if 

Ufehi*. (10) 

The quantity Up2 is proportional to the volume of the 
cylinder with radius p and depth U. In a similar fashion, 
the criterion for the existence of a bound state in a 
truncated parabolic well can be expressed as 

Volume paraboloid ^jirzC, ( i i ) 

where the constant C is nearly one. 
The zero-point energy of 2.65 rs~

m per particle, 
given by (1), corresponds to an oscillatory well described 
by 

F(r) = 0.780fV.-». (12) 

The radius at the top of the truncated paraboloid is ra. 
Using these numbers in (11) (taking C = 1) we find that 
the Wigner cell exhibits a bound state for 

r s ^ 6 . 3 3 . 

We notice that this limiting rs is about the same as the 
one Carr estimates to limit the range of validity of his 
expression for the ground-state energy. 

Lower Limit 

A lower limit for the melting density may be es­
timated by making another extreme assumption about 
the form V(r) for r>rs. Let us suppose that the electron 
gives up all of its vibrational energy and moves freely 
through the lattice after is has left its cell and created a 
crowdion-anticrowdion pair. Then the potential V(r) 
approaches the constant value V(0)-\-AE for values of 
r larger than the sum of the crowdion and the anti­
crowdion radii (rc+rac). V(0) is the value of V in the 
origin of the central well, and AE—O.lrf1 is the defect 
formation energy. The shape of V(r) in the intermediate 
region rs<r<rc+rac is not known. However, we will 
certainly obtain a lower limit to the melting density, 
if we evaluate the density at which a bound state ceases 
to exist, for a potential Vn(r), which consists of a 
parabolic well given by (12), which is cut off flat at 
the height AE=0.2rs~

1 (see Fig. 2, dashed line). The 
radius at the top of the well so obtained is 0.506r„ 
Using these numbers in (11), we find that the well 
will have a bound state if 

r s ^ 9 6 . 5 . 

A More Detailed Estimate of the 
Upper Limit 

The upper and lower limits for the melting density 
which we have just estimated, are quite far apart. In 
particular, the high-density limit seems rather high, 
although the low-density expression for the ground-state 
energy seems to be valid up to such a density.3 However, 
we will show that a more detailed consideration of the 
form of the effective single-particle potential V(r) in 
the region r>rc+rac leads to a considerably lower 
estimate for the high-density limit. 

The form of V(r) for r>rc+rac is, of course, represen­
tative of the motion of the electron outside its cell, or 
rather, of the crowdion motion, since r is a configura-
tional coordinate. In this connection there are two 
kinds of crowdion motion that have to be mentioned. 
First, the interstitial motion in which one and the same 
electron moves from one interstitial position to the 
other, and second, the inter stitialcy motion, in which an 
interstitial electron occupies a lattice site while pushing 
the electron residing there into a different interstitial 
position. A mechanism similar to the latter is also 
responsible for the motion of the anticrowdion. 

Since we are considering an effective single-particle 
potential, only the first kind of motion, the interstitial 
motion, can be treated. However, this limitation does 
not invalidate the ensuing estimate, because, since the 
activation energy for the inter stitialcy motion is bound 
to be smaller than that for the interstitial motion, the 
effect of taking the former mechanism into account 
would be to further lower the upper limit. On the same 
grounds the anticrowdion motion can be left out of 
account. 
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In order to make a reasonable choice for V(r) in the 
region r>rc+rac, we notice that in contrast to what we 
assumed for deriving the lower limit, an electron does 
not give up all of its zero-point energy when it moves 
out of its cell. This is a result of the fact that even in an 
interstitial position, the electron has a certain amount 
of background to its own, which causes it to vibrate 
around the interstitial equilibrium position. In other 
words, the interstitial electron finds itself again in a 
parabolic potential, giving rise to the same vibration 
frequency (because the background density is un­
changed), the minimum of which lies an amount AE 
higher than the minimum 7(0) of the central well. 

Next we have to consider the interstitial motion. The 
interstitial electron may move, with more or less ease, to 
neighboring interstitial positions. As a result, the inter­
stitial electron "sees" a periodic potential of parabolic 
wells in the directions of the neighboring interstitial 
positions (see Fig. 5). This causes the zero-point energy 
of the interstitial electron to be broadened into a band, 
the width of which will be density dependent: the higher 
the density, the broader the band. Let us express the 
owest energy in this band as 2.65rs~

3/27(rs). At a certain 
density the bottom of this band will become lower than 
the zero-point energy of the electron in the central well. 
At this density the localized state of the electron around 
its lattice position ceases to be a stable state. Thus, we 
may formulate our stability criterion as follows: the 
electron lattice is only stable for densities such that 

2.65 2.65 
^ y(rs)+AE(rs). 

3/2 
(13) 

At densities for which this condition is not fulfilled, the 
electron will eventually escape from its cell and diffuse 
through the lattice, moving from one interstitial 
position to another. Since this is true for all electrons in 
the system, the lattice will obviously not exist at such 
densities. 

In order to determine the function y(rs), we have to 
examine in some detail the interstitial potential field. 
An interstitial position in a bcc lattice has four first-
neighbor interstitial positions located at a distance / in 
two mutually perpendicular directions, and eight 
second-neighbor interstitial positions at a distance v2Z 
in four directions which are perpendicular in pairs 
(directions in different pairs are at 60° angles), and 
which are at 45° angles with the first-neighbor directions 
(see Fig. 3). For the present estimate it is a reasonable 
approximation to assume that the three-dimensional 
interstitial field is additive in x, y, and z, and that as a 
function of each of these coordinates it is a periodic 
function of parabolic wells. If we take the x and y 
directions to point to the first-neighbor interstitial sites, 
then the positive z direction points to an occupied 
lattice site, but one that is surrounded by four second-
neighbor interstitial sites. The approximation thus 
amounts to replacing these four interstitial sites at 
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® 2nd NEIGHBOR INTERSTITIAL SITE 
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2nd NEIGHBOR LATTICE SITE 

FIG. 3. Interstitial sites and lattice sites surrounding an occupied 
interstitial site in the bcc lattice. 

distance V2/ by a single one at distance /. This model, 
therefore, underestimates the mobility of the interstitial 
electron, which in turn leads to a calculated melting 
density which is higher than the real one. Consequently, 
we are again led to an upper limit for the melting 
density. 

Another question is whether the lattice electrons, 
surrounding the interstitial will move out of the way and 
thereby increase its mobility. Such displacements can be 
evaluated by direct computation of the polarization of 
the lattice around the interstitial. The result is that the 
two first lattice neighbors of the interstitial (in the z 
direction; cf. Fig. 3) will move out over a distance of 
about 0.4a, while the four second lattice neighbors (in 
the x-y plane) will move out over a distance of about12 

0.044a (a is the nearest neighbor distance in the bcc 
lattice). The outward displacement of the first lattice 
neighbors indicates that the lattice opens up around the 
interstitial as it moves along. Since this enhances its 
mobility, it further lowers the melting density of the 
real lattice. Therefore, neglecting this effect does not 
affect the upper limit derived from our model. 

We can now proceed to determine the function y(rs) 
appearing in (13). The assumption of additivity for the 
three-dimensional interstitial potential field reduces the 
problem to three one-dimensional ones. This enables 
us to use McColl and Simpson's13 result for the one-
dimensional periodic parabolic potential, to evaluate 

12 This rapid decrease in the outward displacement from first 
to second neighbors is a result of the very effective shielding in 
the electron lattice, or, in other words, of its high dielectric 
constant. This is a direct justification for the assumption that the 
crowdion only extends to the six direct neighbors of the interstitial 
(cf. Sec. II). 

13 D. McColl and O. C. Simpson, Argonne National Laboratory 
Report ANL-6647 (unpublished). 
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FIG. 4. Plot of the function y(yo) for the periodic parabolic 
potential (lower solid line). For comparison, we have indicated 
the width of the zero-point band (shaded area), and the bottom 
of the zero-point band for the sinusoidal potential (dashed line). 
The symbols are denned in the text. 

the lowest energy of the zero-point band as a function 
of the periodicity distance /. In Fig. 4 we have plotted 
y = E/%fooo, i.e., the lowest energy in the zero-point 
band of an electron in the additive three-dimensional 
parabolic potential, divided by the unperturbed oscil­
lator energy §&*>, as a function of the quantity y$ 
= %(tno)/h)ll2l (lower solid line in Fig. 4). For comparison 
we have also plotted the same quantity (dashed line) 
for the periodic sinusoidal potential (Mathieu problem) 
which has the same curvature in the bottom of the well 
(i.e., the same co). This problem was treated by Slater.14 

The rs dependence of y(yo) follows from that of yo. 
The vibration energy of 2.65rs~

3/2 per electron leads to : 
co=O.SS3em~1/2(aors)~

sl2 (e and m are the electron charge 
and mass). Further, for the distance between the inter­
stitial positions in the bcc lattice one finds 1= 1.02aors. 

All quantities in (13) can now be evaluated as func­
tions of r8. We then find that the inequality (13) is 
fulfilled for r s ^ 4 7 . This should be, as we have argued, 
on upper limit for the melting density. Combining this 
with our result for the lower limit, our conclusion is 
that the electron lattice will not exist for densities for 
which f s <47, and that it will certainly exist for densities 
corresponding to rs> 97. 

In Figs. 5(a) and (b) we have indicated how the 
zero-point band in the interstitial periodic parabolic 
potential is located with respect to the zero-point energy 
in the central well, for r s = 2 5 and r s = 7 5 , respectively. 
We see that, according to our criterion, the lattice is 
not stable for rs = 25, but that it can be stable for rs = 75. 

At this point we would like to re-emphasize the main 
point of this paper. Thanks to the fact that we used 
a simplified model for the solid, it has been possible to 
indicate limits for the real melting density. Of course, a 
reliable determination of this quantity itself would 

14 J. C. Slater, Phys. Rev. 87, 807 (1952). The curve for the 
sinusoidal potential lies below that for the periodic parabolic 
potential because in the latter potential the walls, separating 
neighboring wells, are higher. 

require a full-fledged many-body approach. That one 
can actually indicate these limits is a result of the fact 
that, whatever the real mechanism that is responsible 
for the melting, the criteria used here do pose a real 
limitation on the actual melting density. For instance, 
the states corresponding to single particles traveling 
through the lattice, which were used here for finding 
the upper limit, should be very close to possible states 
of the real system and as a result pose a limitation on the 
range of densities in which the real lattice is stable. 

V. DISCUSSION 

The electron gas has the rather peculiar property that 
at absolute zero it can occur in both the fluid and the 
solid phase, depending on the density.15 In this paper, 
we have been concerned with determining the density 
range in which the solid phase is the ground state, i.e., 
the density range in which the electron lattice is stable. 
This we call the low-density region of the electron gas. 
As mentioned before this is not the same as the density 
region in which the expression for the energy of the 
lattice configuration (Carr3) converges and is a good 
approximation to the actual ground-state energy. While 
we find the low-density region to start for an rs value 
somewhere between 47 and 100, the lattice expression 

V(r) 
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FIG. 5. Potential energy V(r) for one electron in the static 
electron lattice (r is directed along the axis of one of the coor­
dinates in which the potential is assumed to be separable). For 
r<rS)V(r) represents the central well (in this region r is strictly 
a one-electron coordinate). For r^>rs,V(r) represents the periodic 
potential in the interstitial positions (in this region r is a configura­
tion coordinate). The potential has not been drawn in the region 
immediately outside the central cell. Its form there is uncertain 
because of the overlap of the crowdion and the anticrowdion in 
that region, (a) Situation for rs = 25. The bottom of the zero-point 
band lies below the zero-point level in the central well. The lattice 
is not stable, (b) Situation for rs — 75. The bottom of the zero-
point band lies above the zero-point level in the central well. The 
lattice can be stable [The scales along the abscissa and the ordinate 
are different in (a) and (b)]. 

15 The only real substance showing this property is helium. In 
contrast to the electron gas, helium is solid at high densities and 
liquid at low densities. 
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for the ground-state energy is probably an excellent 
approximation for rs values from 10 up. The reason for 
this is that the existence of long-range order, which is 
characteristic for a lattice configuration, does not 
affect the energy too much. This can easily be shown to 
be the case for the electrostatic binding energy, which 
gives the largest contribution to the ground-state 
energy. The exact value of this quantity in the bcc 
lattice is — 1.792rs~

1 Ry per particle. In the Appendix 
we show that by taking an isolated spherical cell, thus 
completely neglecting long-range order, one finds 
— 1.800/v-1 for this quantity. I t should be emphasized 
that the difference between these numbers represents 
the influence of the long-range order only. The use of a 
spherical cell is justified only when the immediate 
surrounding of the actual cell is highly symmetric, and 
this is only the case when there is complete local order. 
The fact that both numbers differ so little shows how 
insensitive the electrostatic binding energy is to long-
range order. In a similar fashion it may be possible to 
show that local coupling of the vibrational motions 
(thus again neglecting long-range order) will lead to a 
value for the vibrational energy per particle, which is 
closer to 2.65rs~

3/2 [cf. (1)] than the value 3rs~
3/2, which 

is obtained by Wigner's method in which all dipole 
coupling between the cells is neglected. 

One conclusion to be drawn here, which is already 
implied in the foregoing, is that it will be very difficult 
to make any prediction about the density at which the 
electron lattice becomes the ground-state configuration, 
from a consideration of the ground-state energy. A 
second, closely related conclusion is, that it will be 
impossible to derive the lattice ground state from first 
principles by using a variation procedure in which the 
density is varied. 

At this point the method and the results of the present 
work should be compared with the two other estimates 
of the melting density of the electron lattice, which are 
available in the literature. With regards to Nozieres and 
Pines' estimate, it has been pointed but (Ref. 3) that 
the applicability of the empirical Lindemann melting 
formula to the electron lattice remains something to be 
established, and that an estimate based on it is subject 
to rather large uncertainties. On the other hand, Mott 's 
estimate is based on a comparison of the lattice energy 
with the Hartree energy, in a range of densities (r s~20) 
in which the Hartree approximation is not at all valid. 
Moreover, as we have argued, the ground-state energy 
is not a good quantity to consider, for the purpose of 
determining the melting density. 

The main assumption underlying the present con­
siderations is that a meaningful limitation of the actual 
melting density can be obtained from a model in which 
melting is pictured as a single-particle process, whereas 
the real melting process is, of course, probably a cooper­
ative effect. We believe that the single-particle picture 
is in this particular case justified by the fact that in 
the lattice configuration at low densities, the main force 

on an electron arises, not from the other electrons, but 
from the positive background in its immediate vicinity. 

Finally, it should be remarked that the neglect of 
particle statistics implies that these considerations are 
equally valid for a system of charged bosons (see 
Foldy16). The question arises whether the inclusion of 
statistics would invalidate the present results. Carr3 has 
shown that the effects of statistics enter the energy 
expression in overlap terms proportional to exp (cr8

112), 
which are found to be completely negligible for rs> 10. 
This suggests that at rs^S0 the effects of overlap and 
exchange are much too small to alter the effective 
single-particle potential in such a way as to invalidate 
the results obtained from it. 
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APPENDIX 

The Binding Energy of the Static 
Electron Lattice 

The total potential energy of the static electron 
lattice is 

e2 1 r dt 

2 t &i | R t — R y | i J | r — R» | 

e2o2 r r dxdxr 

+ — / / - - . (Al) 
2 J J | r - r ' l 

e is the electronic charge, p is the number density and 
R4- and Ry are electron coordinates. The first term is the 
electron-electron interaction, the second term is the 
electron-background interaction, and the third term is 
the background-background interaction. For an infinite 
system, the background-background interaction cancels 
half of the electron-background interaction, so that V 
may also be written as 

e2 1 e2p r dt 
• u ( 2 ) = - I E • E / -. (A2) 

2 i ]'?*% J R4-—Rj| 2 i J \x—Rt-| 

The energy which is gained by adding the last electron 
to the lattice is 

1 r dr 2<0<2> 

16 L. L. Foldy, Phys. Rev. 124. 649 (1961). 
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This is the expression that is summed over the lattice 
(bcc) to obtain an accurate value for V/N, the electro­
static binding energy per electron. 

Wigner's Approximation for Obtaining V/ N 

Wigner2 uses the expression (A2) as a starting point 
for his approximation. The entire volume 12 is divided 
into N unit cells, which are centered around the N 
lattice points. The integral in (A2) can then be written 
as a sum of integrals over the cells j . We have 

V^ = T,Vi^ = NVi (2) (A4) 

where 

e2 / 1 r dx \ 
•0<<*> = - £ ( P / - ) 

2 j9*i \ I R»— R | J ceiiy I *~~ Rt-1 / 

e2p r 

2 Jc 

dx 

eii* r—R»-
(A5) 

The first term in (A5) is small. I t is the difference 
between the interaction of the central electron i with 
the other electrons j and the interaction of electron i 
with the positive background in the cells j . If the cells 
were spherical, this contribution would vanish. For 
nonspherical cells the field at electron i due to the 
background in cell j can be considered to result from 
an infinite series of higher multipoles in the center of 
cell j . The net background charge of cell j is cancelled 
by the charge of the electron j . The first term of (A5) 
thus represents one-half of the binding energy of 
electron i in a lattice which has at each site a series of 
higher multipoles. In a cubic lattice like the bcc lattice, 
the lowest multipoles that are compatible with the 
cubic symmetry are the hexadecapoles. Hence, in the 
first approximation going beyond the spherical approxi­
mation, the first term of (A5) is half the energy of an 
electron in a lattice of hexadecapoles. 

In Wigner's approximation of spherical cells, the 
first term of (A5) is neglected and the second term is a 
simple integral over a sphere. The result is 

W^Cspher. cells) = -1 .5 r s - 1 Ry . (A6) 

The exact result, obtained by direct summation of 
(A5) over a bcc lattice, is 

Improved Spherical Approximation for 
Obtaining V/N 

The starting point for this approximation is (Al) 
instead of (A2). Again we write the integrals in (Al) as 
sums of integrals over the cells. We have as in (A4) 

V^ = ZVi^ = NV^\ (A8) 

where now 

* 2 e2 / 1 r r dxidx,-

W1} = - E ( + P 2 / / 
2 &i \ | R 4— Ry | J celU J cell; | *i~ *j 

_„/• -*-)-+( — 
J cel l j I -fy -"-i j ' ^ celH | ^i 

e2p2 r r dxidx-

2 J J \xi-x/ 

dxi 

dxdxJ 
(A9) 

The first term in (A9) is small. By arguments similar 
to those above, it can be shown that in a cubic crystal 
this term represents, in the first approximation beyond 
the spherical approximation, half the binding energy 
of a hexadecapole in a hexadecapole lattice. For 
spherical cells this contribution vanishes. The second 
and third term in (A9) give for spherical cells the 
contribution 

^ ( s p h e r . cells) = -1 .8 r 8 - 1 Ry . (MO) 

t ) , = -1 .79186r s - 1 Ry. (A7) 

Although this result is also obtained with a spherical 
approximation, as was (A6), it comes surprisingly close 
(within 0.45%) to the exact result (A7). Wigner's 
result (A6) is off by 17%. The reason for this improve­
ment is, that the term that is neglected in the spherical 
approximation, namely the first term in the expression 
for Vi, is much smaller in (A9) than in (A5). 

Summarizing this result, we can say that the electro­
static binding energy is mainly the result of the fact 
that the electrons are localized, which makes that each 
electron is bound by the positive background in its 
individual cell. The existence of long range order in the 
lattice is seen to have only a very minute influence on 
this binding energy. One therefore expects the contribu­
tion — 1.792rs

_1 to be a very good approximation to the 
electrostatic binding energy, also at those densities 
for which the ground state is no longer a lattice but a 
fluid in which the electrons are still localized and in 
which local order is still present. 


